Abstract

Auroral roar, a narrowband (δƒ/ƒ < 0.1) emission near 2 and 3 times the ionospheric electron gyrofrequency (2ƒce and 3ƒce), is observed with a meridional chain of LF/MF/HF radio receivers located in northern Canada spanning 67° to 79° invariant latitude. Observations of these emissions are compared with the auroral electrojet location inferred from the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array. Variations in the intensity of the observed auroral roar emissions and in the invariant latitude of the most intense emissions are correlated with movements of the poleward boundary of the electrojet. For example, substorm onsets, which appear as rapid poleward expansions of this boundary, result in screening of the emissions from the underlying ground stations because of precipitation‐induced ionization in the lower ionosphere. In four of the five study days the peak emission intensity is located 0°–9° poleward of the poleward electrojet boundary inferred from the magnetometers. In one case the peak emission intensity is up to 10° equatorward of the poleward electrojet boundary. In all cases, there is a tendency for the latitude of the most intense auroral roar emissions to track the movements of the electrojet location inferred from the magnetometer data. For two examples, the footprint of the Fast Auroral Snapshot (FAST) satellite passes within 3° of one or more of the ground stations, and the satellite detects unstable electron populations in the polewardmost auroral arc, reinforcing the scenario that auroral roar emissions are generated by these electrons in the polewardmost arc and propagate into the polar cap where conditions are often favorable for their detection at ground level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.