Abstract

The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-oflatitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an ‘active latitude’. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.