Abstract
AbstractThe original article to which this erratum refers was correctly published online on 1 December 2011. Due to an error at the publisher, it was then published in Journal of Combinatorial Designs 20: 124–141, 2012 without the required shading in several examples. To correct this, the article is here reprinted in full. The publisher regrets this error.We prove that for all odd there exists a latin square of order 3m that contains an latin subrectangle consisting of entries not in any transversal. We prove that for all even there exists a latin square of order n in which there is at least one transversal, but all transversals coincide on a single entry. A corollary is a new proof of the existence of a latin square without an orthogonal mate, for all odd orders . Finally, we report on an extensive computational study of transversal‐free entries and sets of disjoint transversals in the latin squares of order . In particular, we count the number of species of each order that possess an orthogonal mate. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 344–361, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.