Abstract

Poly(vinyl acetate) (PVAc) and natural rubber blends (NR) were prepared by low shear blending of the corresponding lattices. Thin films were cast using a doctor blade technique. SEM and DMA confirmed the essential immiscibility of the two polymers. Even when the poly(vinyl acetate) forms the matrix phase, it still contains domains encapsulated by a rubber phase where particles that resemble the original latex are visible. This incomplete droplet coalescence of the poly(vinyl acetate) is attributed to the fact that the rubber latex droplets were an order of magnitude smaller than the poly(vinyl acetate) latex droplets. Tensile testing revealed a nonlinear dependence of tensile strength and elongation on blend composition. Surprisingly good tensile yield strengths were obtained at intermediate to high PVAc contents. Thermogravimetric analysis of degradation in air and nitrogen atmospheres indicated independent degradation of the parent polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call