Abstract

Unlike its other halogen atom siblings, chlorination of a bioactive compound can change its physiological characteristics, improve its pharmacological profile, and function as a point of diversification through cross-coupling reactions. As a result, it has been a crucial strategy for drug discovery and development. However, functional groups such as amines, amides, hydroxy groups, or carboxylic acids trap the Cl+ , severely limiting the reactivity and making direct chlorination far too difficult to be practical. Herein, we introduce a nucleophilic sulfonohydrazide catalyst for late-stage halogenation of peptides and drugs. This direct, mild and metal-free protocol shows high functional-group tolerance and is compatible with a range of structurally diverse peptides, drugs and aromatic compounds. Furthermore, DFT studies indicate that the reaction most likely proceeds via a cationic transition state. The gram-scale synthesis, high stability and efficiency of the catalyst provide a facile route for late-stage functionalization and intermediates for further derivatization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.