Abstract

Physics and high background conditions set very challenging requirements on readout speed, material budget and resolution for the innermost layer of the SuperB Silicon Vertex Tracker operated at the full luminosity. Monolithic Active Pixel Sensors (MAPS) are very appealing in this application since the thin sensitive region allows grinding the substrate to tens of microns. Deep N-Well MAPS, developed in the ST 130nm CMOS technology, achieved in-pixel sparsification and fast time stamping. Further improvements are being explored with an intense R&D program, including both vertical integration and 2D MAPS with the INMAPS quadruple well. We present the results of the characterization with IR laser, radioactive sources and beam of several chips produced with the 3D (Chartered/Tezzaron) process. We have also studied prototypes exploiting the features of the quadruple well and the high resistivity epitaxial layer of the INMAPS 180nm process. Promising results from an irradiation campaign with neutrons on small matrices and other test-structures, as well as the response of the sensors to high energy charged tracks are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.