Abstract

The Daya Bay Reactor Neutrino Experiment was designed to measure θ13, the smallest mixing angle in the three-neutrino mixing framework, with unprecedented precision. The experiment consists of eight functionally identical detectors placed underground at different baselines from three pairs of nuclear reactors in South China. Since Dec. 2011, the experiment has been running stably for more than 4 years, and has collected the largest reactor anti-neutrino sample to date. Daya Bay is able to greatly improve the precision on θ13 and to make an independent measurement of the effective mass splitting in the electron antineutrino disappearance channel. Daya Bay can also perform a number of other precise measurements, such as a high-statistics determination of the absolute reactor antineutrino flux and spectrum, as well as a search for sterile neutrino mixing, among others. The most recent results from Daya Bay are discussed in this paper, as well as the current status and future prospects of the experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call