Abstract

Abstract This study presents new whole rock major and trace element, Sr-Nd isotopic, petrographic, and geochronologic data for seven latest Permian (Changhsingian)–Late Triassic (Carnian) granitoid intrusions of the northwestern and northeastern Taimyr Peninsula in the Russian High Arctic. U-Pb zircon ages, obtained using secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), define the crystallization age of the Taimyr intrusions studied as ranging from ca. 253 Ma to 228 Ma, which suggests two magmatic pulses of latest Permian–Early Triassic and Middle–Late Triassic age. Ar-Ar dating of biotite and amphibole indicate rapid cooling of the intrusions studied, but Ar-Ar ages of several samples were reset by secondary heating and hydrothermal activity induced by the Middle–Late Triassic magmatic pulse. Petrographic data distinguish two groups of granites: syenite–monzonites and granites–granodiorites. Sr-Nd isotopic data, obtained from the same intrusions, show a variation of initial (87Sr/86Sr)i ratios between 0.70377 and 0.70607, and εNd(t) values range between –6.9 and 1.2. We propose that the geochemical and isotopic compositions of the Late Permian–Triassic Taimyr granites record the existence of a magma mush zone that was generated by the two pulses of Siberian Traps large igneous province (LIP) magmatism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call