Abstract

Multiple myeloma (MM) is a hematologic malignancy of terminally differentiated plasma cells. The mechanisms of the pathogenesis and progression of MM include genetic abnormalities of the MM cells and the interaction between MM cells and bone marrow microenvironment (BMME). MM cells start malignant proliferation in BMME and contribute to the pathogenesis and progression of MM through direct or indirect interactions between cells and the extracellular matrix. Exploring the mechanism of interaction between MM cells and the microenvironment is crucial to improving our understanding of the pathogenesis and progression of MM and early diagnosis and treatment. In addition, the metabolic reprogramming of tumors is one of the key issues of oncology research. Herein, we summarized published findings on the the altered metabolic reprogramming of MM and the characteristics of MM metabolic-microbial interactions in order to gain an in-depth understanding of MM pathogenesis and progression and drug resistance mechanisms, and ultimately to explore for new strategies for MM treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call