Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a rapidly developing technique for the characterization of a wide range of materials. Recently, advances in instrumentation and sample preparation approaches have provided the ability to perform 3D molecular imaging experiments. Polyatomic ion beams, such as C60, and gas cluster ion beams, often Arn (n = 500-4000), substantially reduce the subsurface damage accumulation associated with continued bombardment of organic samples with atomic beams. In this review, the capabilities of the technique are discussed and examples of the 3D imaging approach for the analysis of model membrane systems, plant single cell, and tissue samples are presented. Ongoing challenges for 3D ToF-SIMS imaging are also discussed along with recent developments that might offer improved 3D imaging prospects in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.