Abstract

The LateralPaD is a surface haptic device that generates lateral (shear) force on a bare finger, by vibrating the touch surface simultaneously in both out-of-plane (normal) and in-plane (lateral) directions. A prototype LateralPaD has been developed in which the touch surface is glass, and piezoelectric actuators drive normal and lateral resonances at the same ultrasonic frequency (∼22.3 KHz). The force that develops on the finger can be controlled by modulating the relative phase of the two resonances. A 2DOF load cell setup is used to characterize the dependence of induced lateral force on vibration amplitude, relative phase, and applied normal force. A Laser Doppler Vibrometer (LDV) is used to measure the motion of glass surface as well as of the fingertip. Together, these measurements yield insight into the mechanism of lateral force generation. We show evidence for a mechanism dependent on tilted impacts between the LateralPaD and fingertip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call