Abstract
The current design criterion for laterally loaded drilled shafts embedded in weathered Piedmont rock profiles requires a challenging effort on the part of the engineer. A substantial cost saving could be realized, while maintaining an acceptable and safe performance, if a rational method were developed for the analysis and design of drilled shafts in such a profile. In a current research project, the primary objective is to develop and validate a procedure for design and analysis of laterally loaded drilled shafts embedded in the Piedmont weathered rock profiles. A major component of this research is a field-testing program. Presented are the results of the first in a series of several lateral load tests performed on two drilled shafts 0.762 m (30 in.) in diameter embedded in Piedmont weathered rock. These shafts were instrumented with inclinometers and strain gauges. Field data obtained from the instrumented shafts were used to develop P-y curves. Field testing also encompassed the use of a borehole dilatometer to establish correlations between the rock strength and deformation parameters and potential P-y curves. A comparison is made between backcalculated P-y curves, P-y curves predicted by using Reese’s method, and P-y curves from the rock dilatometer. Loaddeformation results are presented and discussed for all methods used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.