Abstract

In this paper, a novel, to the best of our knowledge, monolithic non-mechanical semiconductor laser scanner in the mid-infrared (MIR) spectrum is proposed. A deflector above the active region at the substrate side is used for coupling the vertical light into a lateral substrate waveguide, which creates a chain of coherent emitters such as optical phased arrays (OPAs) for beam steering. The numerical simulation reveals that GaSb-based surface-emitting interband cascade lasers (SE-ICLs) are an excellent platform for waveguide scanner integration. Due to the hundreds of micrometers of optical path difference and the narrow gap between each emitter, an extremely high angle tuning coefficient of 0.84°/nm covering the whole 28.6° steering range is obtained. This work theoretically verifies the feasibility of integrating an OPA scanner into the GaSb-based SE-ICLs, providing a practical solution to fabricate compact steerable MIR laser sources. Note that this substrate OPA concept has strong adaptation potential to extend to even longer wavelength devices such as InP and GaAs-based quantum cascade lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.