Abstract

Physical interactions between circulating cells and the vascular wall play a central role in inflammation, metastasis, atherosclerosis, and therapeutic cell delivery. Unfortunately, traditional in vitro flow assays cannot be used to visualize the details of cell-surface interactions in blood flow because of inappropriate geometry and the poor penetration of light in erythrocyte solutions. To overcome these obstacles, we have developed an agarose-cast cylindrical vessel system to examine the profiles of cells interacting with surfaces under flow conditions. This design allows observation and quantification of cell deformation as cells adhere to surfaces under dynamic flow conditions without modifying the microscope or optical path. Furthermore, our flow system is uniquely suited for monitoring the profiles of adherent leukocytes deforming in response to erythrocyte suspension flow. We have used this flow system to study the role of erythrocytes in leukocyte-substrate interactions. Our results show that the cell deformation index (the ratio of the cell length to cell height) is higher in erythrocyte solutions compared to erythrocyte-free saline. This novel lateral view flow system provides a powerful technique for visualizing and quantifying the morphological changes of cells in contact with substrates exposed to shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.