Abstract

The lateral uniformity of self-assembled InGaAs quantum dots grown by molecular beam epitaxy (MBE) was assessed as a function of growth conditions. Variations in the dot density and height were determined from atomic force micrographs. Growth rate had a large influence on lateral uniformity. The most uniform dot distributions were grown at low rates, 0.15 monolayers/s (ML/s). Dots deposited at a rate of 1.15 ML/s had large variations in both height and density. These variations decreased as the dot density increased; however, they remained larger than those of dots deposited slowly. The lateral uniformity of dots deposited quickly also improved for the top layer of dots in stacked layers, even though these layers had decreased dot densities. There were negligible differences in the lateral height and density uniformities of dots as functions of continuous versus pulsed growth, wafer diameter and mole fraction of In.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.