Abstract
The tracking accuracy and vehicle stability of self-driving trajectory tracking are particularly important. Due to the influence of high-frequency oscillation near the sliding mode surface and the modeling error of the single-point preview model itself when using sliding mode control (SMC) for the trajectory tracking lateral control of self-driving vehicles, the desired tracking effect of self-driving vehicles cannot be achieved. To address this problem, a combination of sliding mode control and fractional-order proportional-integral-derivative control (FOPID) is proposed for the application of a trajectory tracking lateral controller. In addition, in order to compare with the trajectory tracking controller built using the single-point preview model, 12 real drivers with different levels of proficiency were selected for operational data collection and comparison. The simulation results and hardware-in-the-loop results show that the designed SMC + FOPID controller has high tracking accuracy based on vehicle stability. The trajectory accuracy based on SMC + FOPID outperforms the real driver data, SMC controller, PID controller, and model prediction controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.