Abstract
ABSTRACTTo study the effect of the lateral substituents on the UV stability of high birefringence liquid crystals (LCs), computational chemistry was used to examine a series of high birefringence LCs based on a diphenyl-diacetylene (DPDA) central core, thiophene segments as elongated π-conjugated units and four electron-withdrawing groups (-F, -CF3, -OCF3, -CN) as lateral substituents. In the present study, geometry optimisations have been performed using the DFT/B3LYP/6-311G (d, p) method. Out of a series of functional and basis sets examined, the functional ωB97X-D and basis set 6-31G (d, p) are most successful in predicting charge transfer absorption. The theoretical study indicates that the enhancement of UV stability is related with the types, numbers and positions of the lateral substituents. The calculated results indicate that the electron-withdrawing groups can shorten triple bond length, decrease energy gap value and increase the absorption maxima of the high-Δn LCs, which is beneficial for good UV stability. With the introduction of increasing lateral electron-withdrawing substituent numbers, the DPDA derivatives would further improve UV stability. This work may provide an effective solution for the obstacle existed in the high-Δn LCs with DPDA structures and pave a way for their applications in LC photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.