Abstract
In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained against tip. Real supports are, of course, never perfectly rigid. This report examines the relation of the stiffness of the end axial rotation restraint to the buckling load when the stabilizing effect of an attached deck is taken into account. For the case of uniform load, it is found that as the restraint stiffness approaches zero, the buckling load also approaches zero. This has implications in the design of large roof systems where end restraint on one member is provided by the torsional rigidity of another member connected in‐line. Families of design curves are presented which show the effects of restraint stiffness, span‐depth ratio, and shear stiffness of attached roof deck. It is concluded that periodic bracing against axial rotation is essential for stability of long roof systems with several beams spliced together in‐line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.