Abstract
A vehicle lateral stability control method for real-time calculation and dynamic allocation of the longitudinal force and yaw moment of vehicle tyres is proposed. The achievable range of the longitudinal force and yaw moment of the tyre are calculated in real time through off-line numerical optimisation and nonlinear programming. The calculated values are then adjusted to within the available range and allocated dynamically. A controller for the slip rate and front wheel slip angle is used to ensure that the tyre friction can trace each component force. The proposed method avoids estimating the lateral force of vehicle rear wheels while ensuring accuracy. The results of simulations and driver-in-loop tests demonstrated that the proposed method can improve the track-holding ability while reducing the influence of a road surface with a low adhesion coefficient on vehicle stability. The method ensures high and dynamic tracking performance and lateral stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.