Abstract

In this paper, the kinematic forces which may be applied to bridge piers or pile caps from laterally spreading surficial cohesive soil layers (nonliquefied crusts) through which they pass are considered. Such forces often represent the largest load component acting on a structure and/or foundation during liquefaction-induced lateral spreading. Both circular and square structural inclusions are considered, and particular attention is paid to the orientation of the inclusion to the direction of spreading, here defined as the angle of incidence (θ) . Experimental modeling was conducted using a modified direct shearbox to simulate the spreading of kaolin past structural inclusions at various θ . Load-displacement data and particle image velocimetry analysis revealed that the ultimate load for both square and circular cases may be determined using a wedge-based upper-bound plasticity analysis. For circular sections, this ultimate load is independent of θ due to radial symmetry. The ultimate load on square sect...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.