Abstract

This paper presents an experimental evaluation of a new interface configuration for unbonded post-tensioned shear (UPTS) walls. In the proposed configuration, the wall-base interface is shaped in a circular profile. This circular profile presents a major difference from the currently used flat profile at the wall-base interface of rocking UPTS walls. During lateral response, this circular profile induces the wall to predominantly rotate as a rigid body about a fixed point without uplift, and the system dissipates energy through the contact friction that develops at the wall-base interface. This rigid body motion resembles that of a pendulum, thereby designating this system as a pendulum UPTS wall. At this stage, research has demonstrated the many advantages of this system by proof-of-concept testing of a pendulum light-frame wood (LiF) UPTS wall specimen under increasing levels of post-tensioning force. Compared with rocking UPTS walls, experimental results demonstrate that besides performing damage-free when subjected to high drift levels, the proof-of-concept pendulum LiF-UPTS wall offers the following promising outcomes: (1) insignificant to no wall uplift, (2) insignificant to no wall base shear sliding, (3) reduced stress concentrations at the wall toes because contact stresses are distributed along the wall-base interface over a larger region, (4) nearly constant post-tensioning forces under high drift levels, which limits post-tensioning losses due to yielding of prestressing bars or tendons, (5) increase in energy dissipation capacity of the system through friction, and (6) decrease in the damping reduction factor and thus, reduction in the lateral displacement and force demands in pendulum LiF-UPTS walls. These research outcomes are likely to translate positively to other shear wall types, namely reinforced concrete (RC) precast pendulum UPTS walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.