Abstract
The Marginal Border Series of the Skaergaard intrusion (East Greenland) crystallized in situ on the vertical walls of the magma chamber. It is subdivided into an outer Unbanded Division and an inner Banded Division. The Banded Division contains abundant centimetre- to decimetre-thick bands dominated by fine-grained mafic minerals, with a morphology evolving from almost planar to deeply scalloped and fingered with increasing distance from the intrusion margin. The morphology of these bands is reminiscent of the reaction fronts described in sedimentary basins infiltrated by reactive fluids. We propose that the banding in the Skaergaard Marginal Border Series is produced by chemical disequilibrium resulting from the suction of primitive liquid from the main magma body into the crystal mush, driven by shrinkage of the mush during solidification. Liquid porous flow results in partial dissolution of evolved pre-existing mafic minerals in the mush. This changes the mush liquid composition to one capable of crystallizing mafic rocks with a very minor plagioclase component. Abrupt solidification of this liquid, resulting in the formation of the colloform bands, is explained by supersaturation of some mafic mineral components (e.g. olivine, clinopyroxene, Fe–Ti oxides) in the infiltrating melt. We suggest that the morphological evolution of the colloform bands is a consequence of increasing crystal mush thickness with progressive differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.