Abstract

An innovative self-centering steel–timber hybrid shear wall (SC-STHSW) system is proposed in this paper. The SC-STHSW system is composed of two subsystems: the posttensioned (PT) steel frame, and the infill light-frame wood shear wall. Slip-friction dampers are used as connectors between the frame and shear wall. A reversed cyclic loading experiment was conducted to investigate the failure modes, hysteretic characteristics, and the loss of posttensioning force in the system. The working mechanism of the subsystems and the interaction between them were explored. Experimental results revealed that the peculiar flag-shaped hysteretic behavior is available in the SC-STHSW system. Under the coupled effects of the PT technology and the slip-friction dampers, the energy dissipation behavior of the system was transferred from the plasticity in primary structural members to the frictional dissipation in the dampers, and the residual deformation of the system was controlled effectively. A detailed numerical model was developed to predict the hysteretic performance of the SC-STHSW system. The model was validated by comparing the experimental and numerical results. This work supports the application of the innovative steel–timber hybrid structural system in practical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call