Abstract

Cross-laminated timber (CLT) is becoming a viable option for mid-rise buildings in North America. CLT walls are very effective in resisting lateral forces resulting from wind and seismic loads, yet no standard provisions are available to estimate the resistance of CLT shear walls under lateral loading. The present research investigated CLT shear wall’s performance by evaluating the preferred kinematic rocking behaviour. An analytical procedure was proposed to estimate the resistance of CLT shear walls in a platform type construction. Finite element models of CLT shear with various brackets and hold-downs connections were developed. The models were validated against experimental results. Furthermore, a parametric study on CLT shear walls with the variation of type and number of connectors was conducted. The resistance estimated from parametric study and against analytical were compared. The proposed formulas can be useful tool for the design of CLT platform-type buildings, however, require further experimental validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.