Abstract

A unique method is described for directly observing the lateral organization of a membrane protein (bacterial light-harvesting complex LH2) in a supported lipid bilayer using total internal reflection fluorescence (TIRF) microscopy. The supported lipid bilayer consisted of anionic 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1'-glycerol)] (DOPG) and 1,2-distearoly-sn-3-[phospho-rac-(1'-glycerol)] (DSPG) and was formed through the rupture of a giant vesicle on a positively charged coverslip. TIRF microscopy revealed that the bilayer was composed of phase-separated domains. When a suspension of cationic phospholipid (1,2-dioleoyl-sn-glycero-3-ethylphosphocholine: EDOPC) vesicles (approximately 400 nm in diameter), containing LH2 complexes (EDOPC/LH2 = 1000/1), was put into contact with the supported lipid bilayer, the cationic vesicles immediately began to fuse and did so specifically with the fluid phase (DOPG-rich domain) of the supported bilayer. Fluorescence from the incorporated LH2 complexes gradually (over approximately 20 min) spread from the domain boundary into the gel domain (DSPG-rich domain). Similar diffusion into the domain-structured supported lipid membrane was observed when the fluorescent lipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine-rhodamine B sulfonyl: N-Rh-DOPE) was incorporated into the vesicles instead of LH2. These results indicate that vesicles containing LH2 and lipids preferentially fuse with the fluid domain, after which they laterally diffuse into the gel domain. This report describes for first time the lateral organization of a membrane protein, LH2, via vesicle fusion and subsequent lateral diffusion of the LH2 from the fluid to the gel domains in the supported lipid bilayer. The biological implications and applications of the present study are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call