Abstract
This paper reviews current approaches to the lateral open boundary condition problem for nested regional primitive equation ocean numerical models and proposes a new approach that considers a scale decomposition of the nesting field variables for the barotropic lateral velocity boundary conditions. The Flather [Flather, R.A., 1976. A tidal model of the north-west European continental shelf. Memories de la Societe Royale des Sciences de Liege 6 (10):141–164] open lateral boundary condition is derived from mass conservation considerations and we use this approach to derive a generalized lateral open boundary condition for barotropic velocities. In addition we do a scale selective decomposition of the generalized Flather obtaining new and general lateral scale dependent boundary conditions. The performance of the new lateral boundary conditions have been evaluated in two kinds of experiments: (1) idealized and (2) realistic frameworks. In the idealized framework, as well as the realistic case, the results confirms that the scale selective open boundary conditions improves the solution almost everywhere but in particular in the shallow depth parts of the model domain. In the realistic case the assessment is more difficult and it is connected also to the capability of the nesting and nested model to reproduce the dynamics contained in the observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.