Abstract
We examined membrane properties and synaptic responses of neurons in the mouse lateral superior olivary nucleus (LSO). Two clear populations were identified consistent with: principal neurons which are involved in detecting interaural intensity differences (IIDs) and efferent neurons of the lateral olivocochlear (LOC) system which project to the cochlea. Principal neurons fired a short latency action potential (AP) often followed by an AP train during maintained depolarization. They possessed sustained outward K + currents, with little or no transient K + current (I A) and a prominent hyperpolarization-activated non-specific cation conductance, I H. On depolarization, LOC neurons exhibited a characteristic delay to the first AP. These neurons possessed a prominent transient outward current I A, but had no I H. Both LOC and principal neurons received glutamatergic and glycinergic synaptic inputs. LOC synaptic responses decayed more slowly than those of principal neurons; the mean decay time constant of AMPA receptor-mediated EPSCs was around 1 ms in principal neurons and 4 ms in LOC neurons. Decay time constants for glycinergic IPSCs were around 5 ms in principal neurons and 10 ms in LOC neurons. We conclude that principal cells receive fast synaptic responses appropriate for integration of IID inputs, while the LOC cells possess excitatory and inhibitory receptors with much slower kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.