Abstract

The spatial dependence of proton acceleration at the rear surface of a target that is irradiated by high-contrast and ultraintense laser pulses is investigated. Lateral movement of the proton acceleration position at the rear surface is observed; this is tested by a two-pinhole measurement which results in the observation of protons with a narrow energy band. This drifting is only observed when relativistic-intensity laser pulses irradiate targets with a small preplasma at oblique incidence, as is confirmed by two-dimensional particle-in-cell simulations. This scenario of proton acceleration by the fast-moving sheath field leads to energy selection of the accelerated protons as a function of observing position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call