Abstract

Although monocotyledons lack a vascular cambium of the type found in dicotyledons and conifers, lateral meristems still play an important role in the establishment of their growth habits. The presence near the shoot apex of a primary thickening meristem (PTM), which is probably plesiomorphic in monocotyledons, predisposes evolution into the many pachycaul forms. A PTM occurs in virtually all monocotyledons, whereas the secondary thickening meristem (STM), which is morphologically similar, is limited to a few genera of Liliiflorae. these records are reviewed in a systematic context. To a greater or lesser extent in different taxa, the PTM is responsible for primary stem thickening, adventitious root production, and formation of linkages between stem, root and leaf vasculature. The STM largely contributes to the body of the stem. The sometimes obscure distinction between the two meristems, and their relationship with other stem meristems are discussed. For systematic purposes stem thickening in monocotyledons is separated into two characters: diffuse growth (as in palms), and growth by means of lateral meristems. The three states of the second character are represented by the first three of Mangin’s (1882) four categories (two herbaceous, the third arborescent): (1) The lateral meristem is limited in extent, and ceases activity after root formation. (2) It remains active for a limited period after cessation of root formation, contributing to the plant body. (3) It remains active throughout the life of the plant, contributing the bulk of the plant body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call