Abstract
Aquatic predators like Xenopus laevis exploit mechano-sensory lateral lines to localise prey on the water surface by its wave emissions. In terms of distance, hypothetically, the source of a concentric wave could be centrally represented based on wave curvatures: for Xenopus, we present a first sample of 98 extracellularly recorded brainstem and midbrain responses to waves with curvatures ranging from 22.2-11.1 m(-1). At the frog, concurrently, wave amplitudes and their spectral composition were kept stable. Notably, 61% of 98 units displayed curvature-dependent spike rates, suggesting that wave curvatures could support an extraction of source distances in the amphibian brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Comparative Physiology A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.