Abstract

The perceived shapes of almost circular paths are modified by concentrically placed context paths. These induced changes have previously been attributed to curvature masking. This paper shows that, instead, they can be explained by the impacts of local tilt illusions. First, the tilt-illusion was measured over the full range of orientation differences between short test and context lines and it was shown that the resulting function can be predicted by a model based on a vectorial population response of a bank of orientation selective channels, provided lateral inhibition between channels with the same orientation selectivity and adjacent receptive fields was postulated. Subsequently, it was demonstrated that, if the perceived shape of a test path were modified to accommodate the predicted local tilt-illusion, then this could account for previously reported changes in the detectability of a path sinusoidally modulated in radius. Further, we measured points of subjective vertical in test lines and points of subjective circularity in test paths when surrounded by modulated context paths. The tilt required to null the tilt-illusion approximated the maximum orientation difference from circular measured in the modulated paths at their point of subjective circularity, supporting the proposal that the illusory shape change is due to local changes in the position of the path arising from a response to local tilt illusions induced by the orientation context. An important corollary to this result is that such effects will generalize to all paths which are adjacent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call