Abstract
This paper presents an experimental and numerical study on the lateral impact behavior of rubberized-fibrous concrete-filled steel tubular (CFST) columns. Four types of concrete were utilized in the experimental program in the infilled columns: normal concrete (NC), rubberized concrete (RuC), steel fiber concrete (SFC), and hybrid RuC-SFC. Twelve specimens were tested using drop-weight impact with fixed-sliding boundary conditions. Three different transverse impact energies were produced by applying two masses of the hammers dropped from two different heights. A high-speed camera was implemented to measure the mid-span deflection against time. A 3-D finite element model was presented and verified against the tested specimens and some other experimental work from the literature. Load-displacement curves, the impact force time history, impact energy absorption, and failure modes of the CFST columns under the lateral impact were fully analyzed. The present results showed that at, certain impact energies, the steel tubular suffered only from the plastic deformation, beyond which it started cracking depending on the type of filled concrete. The steel tubular filled with hybrid RuC-SFC showed the highest resistance to crack formation, followed by that filled with SFC, while those filled with NC showed the lowest resistance to crack formation. There is an agreement between the numerical and the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.