Abstract

Stimulation of the lateral hypothalamus (LH) produces antinociception modified by intrathecal serotonergic receptor antagonists. Spinally-projecting serotonergic neurons in the LH have not been identified, suggesting that the LH innervates brainstem serotonergic neurons in the rostral ventromedial medulla (RVM), known to modify nociception in the spinal cord dorsal horn. To determine whether substance P (SP) plays a role in LH-induced antinociception mediated by the RVM, we conducted an anatomical experiment using retrograde tract tracing combined with double label immunocytochemistry and found that neuron profiles immunoreactive for SP in the LH project to the RVM. To further identify a functional connection between SP neurons in the LH and the RVM, the cholinergic agonist carbachol (125 nmol) was microinjected into the LH of female Sprague–Dawley rats (250–350 g) and antinociception was obtained on the tail flick or foot withdrawal tests. Cobalt chloride (100nM) was then microinjected in the RVM to block synaptic activation of spinally-projecting RVM neurons. Within 5 min of the cobalt chloride injection, the antinociceptive effect of carbachol stimulation was blocked. In another set of experiments, the specific NK1 receptor antagonist L-703,606 (5 µg) was microinjected in the RVM following LH stimulation with carbachol and abolished LH-induced antinociception as well. Microinjection of cobalt chloride or L-703,606 in the absence of LH stimulation had no effect. These anatomical and behavioral experiments provide converging evidence to support the hypothesis that antinociception produced by activating neurons in the LH is mediated in part by the subsequent activation of spinally-projecting neurons in the RVM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call