Abstract

Binge ethanol drinking is a highly pervasive and destructive behavior yet the underlying neurobiological mechanisms remain poorly understood. Recent work suggests that overlapping neurobiological mechanisms modulate feeding disorders and excessive ethanol intake, and converging evidence indicates that the melanocortin (MC) system may be a promising candidate. The aims of the present work were to examine how repeated binge-like ethanol drinking, using the 'drinking in the dark' (DID) protocol, impacts key peptides within the MC system and if site-specific manipulation of MC receptor (MCR) signaling modulates binge-like ethanol drinking. Male C57BL/6J mice were exposed to one, three or six cycles of binge-like ethanol, sucrose or water drinking, after which brain tissue was processed via immunohistochemistry (IHC) for analysis of key MC peptides, including alpha-melanocyte stimulating hormone (α-MSH) and agouti-related protein (AgRP). Results indicated that α-MSH expression was selectively decreased, while AgRP expression was selectively increased, within specific hypothalamic subregions following repeated binge-like ethanol drinking. To further explore this relationship, we used site-directed drug delivery techniques to agonize or antagonize MCRs within the lateral hypothalamus (LH). We found that the nonselective MCR agonist melanotan-II (MTII) blunted, while the nonselective MCR antagonist AgRP augmented, binge-like ethanol consumption when delivered into the LH. As these effects were region-specific, the present results suggest that a more thorough understanding of the MC neurocircuitry within the hypothalamus will help provide novel insight into the mechanisms that modulate excessive binge-like ethanol intake and may help uncover new therapeutic targets aimed at treating alcohol abuse disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.