Abstract

The lateral habits of low molecular weight short chain branched polyethylene single crystals from the melt were studied. Three crystallization temperatures (102, 104 and 106°C) were selected for single crystal growth. It was found that the lateral habits of single crystals were asymmetric at all the crystallization temperatures selected. The electron diffraction patterns and tilting series experiments evidenced that there existed chain tilting in all the lamellae. It was the chain tilting that lead to the asymmetry of the growth rate and of lateral habits of the single crystals about the b-axis. The lateral habits substantially changed from the growth at 102°C where the truncated lozenge single crystals formed with straight (110) faces to the growth at 104°C where the lenticular single crystals appeared. This change occurred at 20°C lower than that in a low molecular weight linear polyethylene with the same molecular weight. Furthermore, kinetics theory analysis evidenced that the change of lateral habits from truncated lozenge to lenticular shape resulted from the transition of growth regime. The results were the same as that of high molecular weight linear polyethylene but different to that of low molecular weight linear polyethylene. It may be attributed by the existence of short branched chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call