Abstract
Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.