Abstract

In this article, we have carried out a comprehensive study on the wireless power transfer (WPT) concept from the rectifier circuit construction and state-of-art GaN Schottky barrier diode (SBD) device technology to the WPT system demonstration. Benefited from the wide bandgap, high mobility, and saturation velocity of the gallium nitride (GaN) two-dimensional electron gas, engineered lateral GaN SBD with low turn-ON voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> ) of 0.47 V, ON-resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> ) of 4 Ω, breakdown voltage of 170 V, and junction capacitance (C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">j</sub> ) of 0.32 pF at 0 V bias are achieved, which satisfy the fundamental requirements for microwave power rectification. After incorporating the high-performance GaN SBD into the optimized rectifier circuit, high radio frequency (RF)/dc conversion efficiency of 79% is achieved, and the input power of per single GaN SBD is increased by 10X when compared with that of a commercially available silicon (Si) SBD at the same efficiency of 50% and frequency of 2.45 GHz. Based on the rectifier circuit, a microwave power transfer system is constructed with 400 light emitting diodes lighted up, verifying the great promise of adopting high-power GaN SBD for the wireless high-power transfer as an alternative energy-harvesting technique for future WPT application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.