Abstract

AbstractA suite of observationally driven model experiments is used to investigate the contribution of near-surface lateral eddy mixing to the subtropical surface salinity maxima in the global ocean. Surface fields of salinity are treated as a passive tracer and stirred by surface velocities derived from altimetry, leading to irreversible water-mass transformation. In the absence of surface forcing and vertical processes, the transformation rate can be directly related to the integrated diffusion across tracer contours, which is determined by the observed velocities. The destruction rates of the salinity maxima by lateral mixing can be compared to the production rates by surface forcing, which act to strengthen the maxima. The ratio of destruction by eddy mixing in the surface layer versus the surface forcing exhibits regional differences in the mean—from 10% in the South Pacific to up to 25% in the south Indian. Furthermore, the regional basins show seasonal and interannual variability in eddy mixing. The dominant mechanism for this temporal variability varies regionally. Most notably, the North Pacific shows a large sensitivity to the background salinity fields and a weak sensitivity to the velocity fields, while the North Atlantic exhibits the opposite behavior. The different mechanism for temporal variability could have impacts on the manifestation of a changing hydrological cycle in the sea surface salinity (SSS) field specifically in the North Pacific. The authors find evidence for large-scale interannual changes of eddy diffusivity and transformation rate in several ocean basins that could be related to large-scale climate forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.