Abstract

A model for the effect of protein concentration on the rate of lateral diffusion of integral membrane proteins is presented, in which the proteins are represented by equivalent hard circular particles on a surface. As the density of particles increases, the probability of finding a vacancy immediately adjacent to a tracer particle into which it may diffuse decreases, resulting in a concomitant reduction of the tracer diffusion coefficient. Using scaled particle theory to calculate the concentration-dependent probabilities, a simple approximate result is obtained in closed form, that is compared with the results of previously published Monte Carlo lattice simulations and experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call