Abstract
Fluorescence recovery after photobleaching (FRAP) has recently been used to examine the percolation properties of coexisting phases in two-component, two-phase phosphatidylcholine bilayers [Vaz, W. L. C., Melo, E. C. C., & Thompson, T. E. (1989) Biophys. J. 56, 869-876]. We now report the use of FRAP to study two additional problems in similar systems. The first is the effect of solid-phase obstacles on the lateral diffusion in the fluid phase. The second is the question of whether or not, in a single bilayer, solid-phase domains in one monolayer are exactly superimposed on solid domains in the apposing monolayer. To address the first problem, the lateral diffusion of N-(7-nitrobenzoxa-2,3-diazol-4-yl)-1-palmitoyl-2-oleoylphosp hatidylethanolamine (NBD-POPE), a probe soluble only in the fluid phase when solid and fluid phases coexist, has been studied in the mixture N-lignoceroyldihydrogalactosylceramide (LigGalCer)/dipalmitoylphosphatidylcholine (DPPC). Percolation of the fluid phase occurs at a high mass fraction of solid phase. This indicates that the solid domains have a centrosymmetric shape, a characteristic which makes this a good experimental system to test theoretical simulations of diffusion in an archipelago. It is shown that agreement between theory and experiment is poor, a result that had already been observed when the obstacles were integral membrane proteins. We develop an effective-medium model for diffusion in two-phase systems which explains both our results and those obtained with integral proteins. The distinctive feature of the model is the consideration of an annular region around the obstacles where the lipids are more ordered than in the bulk fluid phase. The diffusion coefficient is then calculated by extending the free area model to two-phase systems, taking these annuli into account. The second question, the organization of the solid-phase domains across the lipid bilayer, is examined in the systems LigGalCer/DPPC and dimyristoylphosphatidylcholine (DMPC)/distearoylphosphatidylcholine (DSPC) by comparing the diffusion of a fluid-phase-soluble, gel-phase-insoluble lipid derivative which spans the two monolayers of a bilayer (NBD-membrane-spanning-phosphatidylethanolamine, NBD-msPE) with that of a probe which is restricted to a single monolayer. In LigGalCer/DPPC, 20:80, the distribution of solid domains in one of the monolayers is independent of the distribution in the apposing monolayer. In contrast, in DMPC/DSPC, 50:50, the solid domains in one monolayer are exactly superimposed upon the solid domains existing in the apposing monolayer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.