Abstract

With the increasing development of civil engineering in large cities, more and more excavations and surcharge loadings are being constructed or planned adjacent to existing building piles in crowded urban areas. Previous study on pile deformation has primarily focused on surcharge loading or foundation excavation and given little concern to the combined action of surcharge loading and foundation excavation. The article develops a two-stage process to assess the lateral displacement of nearby pile foundations induced by the combined action of surcharge loading and excavation. Firstly, the local plastic deformation theory and Boussinesq solution are used to accurately predict the passive loading of adjacent pile foundations caused by surcharge loading; Mindlin formulas are adopted to predict the passive pile’s additional lateral stress applied by excavation. Secondly, Pasternak models are adopted and the finite difference method is used to establish the deflection differential formula of the single passive pile. Last but not least, a parametric study is conducted to investigate the influence of the loading dimensions, loading magnitudes, and three-dimensional excavation dimensions. The findings of the calculations reveal that the loading magnitudes have a more significant impact on the lateral displacement of the pile compared to the loading dimensions. Therefore, a concentrated surcharge loading should be avoided. Additionally, the excavation depth has a greater influence on the lateral displacement of the pile compared to the excavation area. In order to mitigate this situation, a step excavation should be implemented for each layer of soil, with the soil excavated away from the pile foundation first.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call