Abstract

InGaN/GaN multiple-quantum-well light-emitting-diode structures utilizing tunnel contact junctions grown by metalorganic chemical vapor deposition have been demonstrated. The p+/n+ GaN tunnel junctions are located in the upper cladding layers of conventional devices, allowing n-type GaN instead of p-type GaN as a top contact layer. Thus, metal ohmic contacts are done at the same time on the top and the lower contact layers. The reverse-biased tunnel contact junction provides lateral current spreading without semitransparent electrode and spatially uniform luminescence exhibiting an improved radiative efficiency. The tunnel contact junction is shown to be an effective method to make possible hole injection via a lateral electron current, with only a small penalty in voltage drop compared to conventional devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call