Abstract

PurposeThis paper aimed a fractional-order sliding mode-based lateral lane-change control method that was proposed to improve the path-tracking accuracy of vehicle lateral motion.Design/methodology/approachIn this paper the vehicle presighting and kinematic models were established, and a new sliding mode control isokinetic convergence law was devised based on the fractional order calculus to make the front wheel turning angle approach the desired value quickly. On this basis, a fractional gradient descent algorithm was proposed to adjust the radial basis function (RBF) neuron parameter update rules to improve the compensation speed of the neural network.FindingsThe simulation results revealed that, compared to the traditional sliding mode control strategy, the designed controller eliminated the jitter of the sliding mode control, sped up the response of the controller, reduced the overshoot of the system parameters and facilitated accurate and fast tracking of the desired path when the vehicle changed lanes at low speeds.Originality/valueThis paper combines the idea of fractional order calculus with gradient descent algorithm, proposed a fractional-order gradient descent method applied to RBF neural network and fast adjustment the position and width of neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.