Abstract

Colloidal nanorods based on CdS or CdSe, functionalized with metal particles, have proven to be efficient catalysts for light-driven hydrogen evolution. Seeded CdSe@CdS nanorods have shown increasing performance with increasing rod length. This observation was rationalized by the increasing lifetime of the separated charges, as a large distance between holes localized in the CdSe seed and electrons localized at the metal tip decreases their recombination rate. However, the impact of nanorod length on the electron-to-tip localization efficiency or pathway remained an open question. Therefore, we investigated the photo-induced electron transfer to the metal in a series of Ni-tipped CdSe@CdS nanorods with varying length. We find that the transfer processes occurring from the region close to the semiconductor-metal interface, the rod region, and the CdSe seed region depend in different ways on the rods' length. The rate of the fastest process from excitonic states generated directly at the interface is independent of the rod length, but the relative amplitude decreases with increasing rod length, as the weight of the interface region is decreasing. The transfer of electrons to the metal tip from excitons generated in the CdS rod region depends strongly on the length of the nanorods, which indicates an electron transport-limited process, i.e., electron diffusion toward the interface region, followed by fast interface crossing. The transfer originating from the CdSe excitonic states again shows no significant length dependence in its time constant, as it is probably limited by the rate of overcoming the shallow confinement in the CdSe seed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.