Abstract

Lateral-torsional buckling (LTB) strength of steel I-beams subjected to moment gradient loading is scaled by the moment gradient factor, C b . The C b factor depends on the non-uniformity of moment diagram, the height of the applied transverse loads within the unbraced length and end conditions. Generally, the C b factors given by codes have been derived from elastic LTB analysis theory. However, the same C b factors are used for beams that buckle inelastically. This paper develops a three dimensional finite element model using ANSYS for the inelastic nonlinear flexural-torsional analysis of I-beams and uses it to investigate the effects of unbraced length and central off-shear center loading (located at center, top flange and bottom flange) on the moment gradient factor in inelastic behavioral zone. It is found that the C b factors given by AISC-LRFD in Specification for structural steel buildings (AISC 360-05) and Structural Stability Research Council Guidelines are not accurate for the point load cases applied at center and bottom flange in which I-beam buckles inelastically. It is seen also that the AISC-LRFD flexural resistance equations overestimate the actual moment capacity of inelastic I-beams under moment gradient. Therefore, a simple equation is proposed to be used instead of the code equation in inelastic zone for the investigated load cases in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.