Abstract

Lateral buckling of thin-walled composite beams with monosymmetric sections is studied. A general geometrically nonlinear model for thin-walled laminated composites with arbitrary open cross-section and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. All the stress resultants concerning bar and shell forces are defined, and nonlinear strain tensor is derived. General nonlinear governing equations are given, and the lateral buckling equations are derived by linearizing the nonlinear governing equations. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical examples are obtained for thin-walled composite beams with monosymmetric cross-sections and angle-ply laminates. The effects of fiber orientation, location of applied load, modulus ratio, and height-to-span ratio on the lateral buckling load are investigated. The torsion parameter and a newly-defined composite monosymmetry parameter are also investigated for various cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.