Abstract

Black phosphorene (BP), a newly discovered elemental two-dimensional material, is attractive for optoelectronic and photonic applications because of its unique in-plane anisotropy, thickness-dependent direct bandgap and high carrier mobility. Since its discovery, black phosphorene has become an appealing candidate well-suited for polarization-resolved near- and mid-infrared optoelectronics due to its relative narrow bandgap and asymmetric structure. Here, we employ benzyl viologen (BV) as an effective electron dopant to part of the area of a (p-type) few-layer BP flake and achieve an ambient stable, in-plane P–N junction. Chemical doping with BV molecules modulates the electron density and allows acquiring a large built-in potential in this in-plane BP P–N junction, which is crucial for achieving high responsivity photodetectors and high quantum efficiency solar cells. As a demonstrative example, by illuminating it with a near-infrared laser at 1.47µm, we observe a high responsivity up to ~180mA/W with a rise time of 15ms, and an external quantum efficiency of 0.75%. Our strategy for creating environmentally stable BP P–N junction paves the way to implementing high performance BP phototransistors and solar cells, which is also applicable to other 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.