Abstract

Atomically thin transition-metal dichalcogenide (TMDC) heterostructures have attracted increasing attention because of their unprecedented potential in the fields of electronics and optoelectronics. However, selective growth of either lateral or vertical TMDC heterostructures remains challenging. Here, we report that lateral and vertical MoS2/MoSe2 epitaxial heterostructures can be successfully fabricated via a one-step growth strategy, which includes triggering by the concentration of sulfur precursor vapor and a high-temperature annealing process. Vertically stacked MoS2/MoSe2 heterostructures can be synthesized via control of the nucleation and growth kinetics, which is induced by high sulfur vapor concentration. The high-temperature annealing process results in the formation of fractured MoSe2 and in situ epitaxial growth of lateral MoSe2-MoS2 heterostructures. This study has revealed the importance of sulfur vapor concentration and high-temperature annealing processes in the controllable growth of MoSe2-MoS2 heterostructures, paving a new route for fabricating two-dimensional TMDC heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call