Abstract

The inertial migration of particles in micro-scale flows has received much attention due to its promising applications, such as the membrane-free passive separation of particles or cells. The particles suspended in rectangular channels are known to be focused near the center of each channel face as the channel Reynolds number (R(C)) increases due to the lift force balance and the hydrodynamic interactions of the particles with the wall. In this study, the three-dimensional positions of neutrally buoyant spherical particles inside a square microchannel are measured using the digital holographic microscopy technique, and a transition from the lateral tubular pinch to the cross-lateral focusing with increasing R(C) is reported. The particles are found to migrate first in the lateral direction and then cross-laterally toward the four equilibrium positions. A general criterion that can be used to secure the fully developed state of particle focusing in Lab-on-a-Chip applications is also derived. This criterion could be helpful for the accurate estimation of the design parameters of inertial microfluidic devices, such as R(C), channel length and width, and particle diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call