Abstract
ABSTRACT In empirical work, ordinal variables are typically analysed using means based on numeric scores assigned to categories. While this strategy has met with justified criticism in the methodological literature, it also generates simple and informative data summaries, a standard often not met by statistically more adequate procedures. Motivated by a survey of how ordered variables are dealt with in language research, we draw attention to an un(der)used latent-variable approach to ordinal data modelling, which constitutes an alternative perspective on the most widely used form of ordered regression, the cumulative model. Since the latent-variable approach does not feature in any of the studies in our survey, we believe it is worthwhile to promote its benefits. To this end, we draw on questionnaire-based preference ratings by speakers of Maltese English, who indicated on a 5-point scale which of two synonymous expressions (e.g. package-parcel) they (tend to) use. We demonstrate that a latent-variable formulation of the cumulative model affords nuanced and interpretable data summaries that can be visualized effectively, while at the same time avoiding limitations inherent in mean response models (e.g. distortions induced by floor and ceiling effects). The online supplementary materials include a tutorial for its implementation in R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.